Faculty of Science

First Semester, 2022 – 23 Course Handouts

Table of Contents

S. No	Course Code	Course Name	Page No.		
First Year					
1	SC 110	Foundation Course (Hindi)	01-02		
2	SC 111	Physics – I	03-05		
3	SC 112	Chemistry - I	06-09		
4	SC 113	Mathematics - I	10-11		
5	SC 114	Computer Science - I	12-13		
6	SC115	Biology- I	14-16		
		Second Year			
7	SC 210	Foundation Course (English)	17-19		
8	SC 211	Physics - III	20-22		
9	HSC 211	Physics (H1) (Elements of Spectroscopy)	23-25		
10	SC 212	Chemistry - III	26-29		
11	HSC 212	Chemistry (H1) (Spectroscopy I)	30-32		
12	SC 213	Mathematics - III	33-34		
13	HSC 213	Mathematics (H1) (Set theory and Metric space)	35-36		
		Third Year			
14	SC310	Foundation Course (Personality Development)	37-38		
15	SC 311	Physics V	39-41		
16	HSC 311	Physics (H3) (Data Science for Basic Research)	42-44		
17	SC 312	Chemistry - V	45-47		
18	HSC 312	Chemistry (H3) (d-block elements)	48-50		
19	SC 313	Mathematics - V	51-52		
20	HSC 313	Mathematics (H3) (Integral Transforms and Fourier Analysis)	53-54		
21	SC314	Computer Science- V (Data Structure and Algorithm)	55-57		

Faculty of Science First Semester, 2022 – 2023 **Course Handout**

Course No	Course Title	L	Р	U
SC110	HINDI	3	0	3

Instructor-in-charge: Dr. JAYA SINGH

Learning Outcomes:

- 1. भाषा के प्रति रूचि उत्पन्न कराना
- 2. सम्प्रेषण में विकास कराना
- भाषा को सुदृढ़ बनाना
 शब्द्कोश में विकास कराना
- 5. भाषां में शुध्दि, अशुद्धि का ज्ञान कराना

Text Book	भारतीयता के अमर स्वर
Reference Book R1	हिंदी व्याकरण(डॉ.हरदेव बाहरी)
R2	नेट/स्लेटहिंदी भाषा
R3	https://www.bsakari.com, hi.m.wikipedia.org/wiki/pallavan
R4	https://www.learncbse.in, hi.m.wikipedia.org/wiki/pallavan

Lecture-wise plan

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1-5	पल्लवन, पत्राचार अनुवाद पारिभाषिकषबदावली	पल्लवन, पत्राचार अनुवाद पारिभाषिकषबदावली	T1, P 2/CH -1 ,Pg N.31-69
6-8	कहानी कहानी	ख).टेलीफ़ोन(कहानी)–हरिशंकर परसाई सादगी (ग)	T1,P.1/CH-2 PG.10-11
9-14	हिंदी वर्तनी संबंधी अशुद्धियाँ हिंदी का प्रयोग , व्यंग्य लेखन दूर करना, मुहावरे औरलोको शब्द समश्रुत	हिंदी वर्तनी संबंधी अशुद्धियाँ शब्द तसमश्रु , और	T1, P.2 CH-2 PG101- 136

15-17	भारत वंदना (कविता) –सूर्यकान्त त्रिपाठी निराला शक्ति की योग (ग) (बच्चन हरिवंशराय)	भारत वंदना (कविता)–सूर्यकान्त त्रिपाठी निराला(बच्चन हरिवंशराय) शक्ति की योग (ग)	T1, P.1 CH-1 PG No.1 &24
18-22	देवनागिरी लिपि –नामकरण स्वरुप , औरविशेषताएँ,अपठित गद्यांश	देवनागिरी लिपि –नामकरण स्वरुप , औरविशेषताएँ,अपठित गद्यांश,	T1,P. 2/CH-3 PG No.174,180,210, 214
23-25	कहानी	ख(अफसर शरद)जोशी (तिस्स सिद्धा.डॉ) करुणा की बुद्ध (ग)	T1,P.1 /CH-1 PG No.12-13 & 21-23
26-29	संक्षेपण में हिंदी, संक्षिप्तिकरणहिंदी में पदनाम	संक्षेपण,पदनाम में हिंदी,	T1, P.2 /CH-5 PG No215-223 &
30-32	कंप्यूटर में हिंदी का अनुप्रयोग	कंप्यूटर में हिंदी का अनुप्रयोग	T1, P.2/ CH-1 PG No. 198-204
33-35	लेख	(ख) सामाजिक गतिशीलता	T1-P.3/,CH-1PG No. 234-236
36-38	लेख	(ग) दर्शन और धर्म	T1-P.3,/CH-3 PG No. 237-242
39-42	पुनरावृत्ति	पाठ्यपुस्तक	1-262

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weight age	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	17	19/09//2022		CB
Test 2	60 Minutes	17	17/10/2022		CB
Test 3	60 Minutes	16	17/11/2022		OB
Quizzes (2)	20 Minutes each	10	**	**	CB
Comprehensive Exam	3 Hours	40	12/12/2022		CB

** To be announced

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc

Date: 02/08/2022

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title		Р	U
SC 111	Physics I (Digital Electronics & Microprocessor 8085)	4	2	5

Instructor-in-charge: Dr. ANIL KUMAR VERMA

Learning Outcomes:

Physics I form the first half of a two-semester comprehensive course on core level physics to be taught to all B.Sc. students.

The objective of the course is to impart knowledge of the basic tools for the design of digital circuits and to provide methods and procedures suitable for a variety of digital design applications. The course also introduces fundamental concepts of computer organization. The course also provides laboratory practice.

Scope & Objective of the course:

Textbook (s) T1	Digital Design, M. Morris Mano, PHI, 3rd Edition, 2002.
T2	The 8085 Microprocessor Architecture, Programming and Interfacing by K. Uday Kumar & B.S. Uma shankar, Pearson Publication (2008)
Reference book(s) R1	Digital and Analogue Techniques by Navneeth, Gokhale & Kale, Kitab Mahal, 2002.
R2	Microprocessor, Architecture, programming and application with the 8085 by Ramesh Gaonkar
R3	https://www.tutorialspoint.com/microprocessor/microprocessor_8085_instruction_sets.htm

Lecture-wise plan:

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page No.of Text Book)
1-3		Number Systems – Decimal, Binary,	(1.1-1.4) (T1)
4-5	Provide the basics of Digital	Provide the basics of Digital Octal, Hexadecimal, 1's and 2's complements,	
6-7	electronics	Boolean theorems	4.4-4.8 (T1)
8-12		Logic Gates, Universal gates, Sum of products and product of sums	4.3, 6.1-6.4 (T1)
13-15	To make the students learn	Min terms and Max terms, Karnaugh map Minimization.	6.6 (T1)
16-17	about Combinational Circuit	Design of Half and Full Adders, Half and Full Sub tractors	7.3 (T1)
18-19	Design	Multiplexer	8.1 (T1)
20-21		De-Multiplexer, Decoder, Encoder	8.2-8.3 (T1)
22-23	To make the students learn about Synchronous Sequential	Flip flops – SR	10.3 (T1)

24-27	Circuits	JK, T, D, Master/Slave FF – operation and excitation tables, Triggering of FF,	10.5-10.8 (T1)
28-33	Analysis and design of clocked sequential circuits, circuit implementation	Design of Counters- Ripple Counters, Ring Counters, Shift registers, Universal Shift Register.	11.1-11.3, 11.12-11.13 (T1)
34-35	Introduction to 8085	8085 - Microprocessor architecture and its operations, Addressing modes of 8085, 8085	13.3-13.5 (T1)
36-39	Concept of Assembly level programming and programming	Instructions (Data transfer, Arithmetic), 8085 Instructions (Logical, Branch Control operations), Machine Control Instructions, Stack and Subroutine	6 – 8 (T2)
40-42	practice	Programming the 8085	(R3)

Evaluation Scheme: Physics I (Lab)

S. No.	Name of Experiment
1	To verify the Truth Table of Basic Logic Gates (NOT/OR/AND) using Breadboard.
2	To verify the Truth Table of Universal Gates (NAND/NOR) using Breadboard.
3	To create AND gate using NOR Gate (s).
4	To create AND gate using NOR Gate (s).
5	To create OR gate using NAND Gate (s).
6	Write a Program to Add 2 (8 bit) numbers using assembly level language (8085) with suitable Simulator.
7	Write a Program to Subtract 2 (8 bit) numbers using assembly level language (8085) with suitable Simulator.
8	Write a Program to generate Fibonacci series using assembly level language (8085) with suitable Simulator.
9	Write a Program to Add 2 (16 bit) numbers using assembly level language (8085) with suitable Simulator.
10	Write a program to Store 8-bit data in memory using assembly level language (8085) with suitable Simulator.

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	19.09.2022	1-12	СВ
Test 2	60 Minutes	8	17.10.2022	13-21	СВ
Test 3	60 Minutes	8	17.11.2022	22-33	OB
Lab	Throughout the Semester	20	**	**	СВ
Comprehensive Exam	3 Hours	56	14.12.2022	1-42	СВ

****** To be announced in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. ANIL KUMAR VERMA Instructor-in-charge

Faculty of Science First Semester, 2022–2023 Course Handout

Course No	Course Title	L	Р	U
SC112	Chemistry I (Basic Chemistry)	4	2	5

Instructor-in-charge: Dr. PIYUSH THAKUR

Learning Outcomes:

This first level course is offered in the first semester for the students of bachelor of sciences.

- 1. Chemical reactions and strategies to balance them.
- 2. The fundamental properties of atoms, molecules, and the various states of matter.
- 3. The electronic structure of atoms and its influence on chemical properties.
- 4. Predict and explain patterns in shape, structure, bonding and hybridization of molecules.
- 5. Understand the reactivity for hydrocarbons, halocarbons, alkenes, dienes, and arenes.

Textbook (s) T1	Concise Inorganic Chemistry, J.D. Lee, Black Well Science, OUP, 5th Edition, 1996
T2	Organic Chemistry, Reactions and Reagents, O.P. Agrawal, Krishna's Educational publishers, fifty fourth edition, 2016.
Т3	University Chemistry, Bruce M. Mahan and Rollie J. Meyers, AWL publication, fourth edition, 1998.
Reference Book R1	Organic Chemistry, Francis A. Carey, seventh Edition, The McGraw-Hill, 2008.
R2	Physical Chemistry, Ira N. Levine, Fifth Edition, Tata McGraw-Hill , 2002
R3	Ernest L Eliel, Stereochemistry of Carbon Compounds, Tata McGraw-Hill Edition, 2002.
R4	Huheey, Keiter & Keiter, Inorganic Chemistry, Pearson Education, 2003.

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1-3	The fundamental	Idea of de-Broglie matter waves, Heisenberg uncertainty principle, Radial and angular wave functions and probability distribution curves	T1:10-21
4-5	properties of atoms, molecules, and the various states of matter	Atomic orbitals, Bohr theory	T1:4 – 10
6-8		Aufbau and Pauli exclusion principles, Hund's multiplicity rule, effective nuclear charge.	T1: 21 – 24
9-14	To understand the periodic behavior of elements	Periodic Properties Atomic and ionic radii, ionization energy, electron affinity and electronegativity definition, methods of determination or evaluation, trends in periodic table and applications in predicting and explaining the chemical behavior	T3:656 – 678
15–16		Hybridization,	T1: 81 – 89
17-18	Predict and explain patterns in shape, structure, bonding and	Bond lengths and bond energy	T2: 15 – 29
19-20	hybridization of molecules	Hydrogen bonding, Van der Waals interactions.	T2: 81 – 94
21-23		Resonances, hyper conjugation, aromaticity, inductive and field effects.	T2: 32 – 59
24-25		IUPAC nomenclature of branched and unbranched alkanes, Isomerism in alkanes	R1: 64-76
26-27	Understand the physical properties and	physical properties and chemical reactions of alkanes,	R1: 80-82
28-29	alkanes	Cycloalkanes – Nomenclature, methods of formation, chemical reactions	R1: 77-78 R1: 80-82
30-31		Ring strain in small rings (cyclopropane and cyclobutane	R1: 111-112

32-34	Understand the	Nomenclature of alkenes, Structure and Bonding in alkenes	R1: 182-188
35-37	chemical reactions of dienes, and arenes	Physical and Chemical reactions of alkenes	R1: 189-205
38		Nomenclature, structure and bonding in alkynes	R1: 355-359
39-40		Chemical reactions of alkynes, acidity of alkynes	R1: 364-372

Evaluation Scheme: Chemistry I (Lab)

S. No.	Name of Experiment
	Qualitative analysis of mixture containing 08 radicals including two less common metals from among the following by semi micro method
Basic radicals:	AgI, PbII, BiIII, CuII, CdII, AsIII, SbIII, SnII, FeIII, AlIII, CrIII, ZnII, MnII, CoII, NiII, BaII, CaII, MgII, NaI, KI, CeIV, ThIV, ZrIV, WVI, TeIV, TiI, MoVI, UVI, VV, BeII, LiI, AuI, PtIV,
Acid radicals:	Carbonate, sulphide, sulphate, nitrite, nitrate, acetate, chloride, fluoride, borate, sulphonate, oxalate, phosphate, silicate, thiosulphate,
2	To detect the presence of functional groups in the given organic compound.
3	To detect the presence of elements in the given organic compound.
4	To determine the strength of given HCl solution by titrating it against NaOH solution.
5	To verify the Beers-Lambert Law

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	20.09.2022	1-15	СВ
Test 2	60 Minutes	8	18.10.2022	16-30	СВ
Test 3	60 Minutes	8	18.11.2022	31-40	OB
Lab	60 Minutes	20		**	СВ
Comprehensive Exam	3 Hours	56	16.12.2022	1-40	СВ

** To be announced in the class

Make-up Policy: Make–up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. PIYUSH THAKUR Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title		Р	U
SC113	Mathematic I (Calculus)	4	0	4

Instructor-in-charge: Dr. SHANTI SWARUP DUBEY

Learning Outcomes:

After successful completion of the course student will be able to

- 1. Convergence of sequence and series.
- **2.** Basic concept of limit and continuity.
- **3.** Expansion of function.
- 4. Linear system of equation, rank of matrices.

Text Book T1	Differential Calculus, by Shanti Narayan& P K Mittal, S Chand & Com Ltd.
Text Book T2	Engineering Mathematics, Dr. Hari Arora, S K Kataria & Sons
Text Book T3	Applied Mathematics, N P Bali, University Science Press

Lecture wise plan

			Reference
Lecture	Learning Objective	Topics to be covered	(chapter/sec./Page
Nos.			Nos of Text/Ref.
			Books)
1-2	Sequence and series	Definition of Sequence and series	T2 Ch-8
			237-276
3-4	Condition of convergence	Convergence and divergence of infinite series.	T2 Ch-8
			237-276
5-6	Test for convergence	Comparison test, D'Alembert ratio test, Cauchy's	T2 Ch-
		root test	237-276
7-9	Integration	Integration of irrational algebraic functions and	T3 Ch 11
		transcendental functions, Reduction formulae,	188-309
		Definite integrals.	
	Concept of Limit and	Limit and Continuity ε - δ definition of limit of a	
10-13	Continuity	real valued function, Limit at infinity and infinite	T1 Ch-2
		limits;.	69-117
	Types of discontinuity;	Continuity of a real valued function, Properties of	
14-19	Uniform continuity.	continuous functions, Intermediate value theorem,	T1 Ch-2
		Geometrical interpretation of continuity, Types of	114-117
		discontinuity; Uniform continuity.	
	Differentiability of a real	Differentiability of a real valued function,	
20-24	valued function	Geometrical interpretation of differentiability,	T1 Ch-4
		Relation between differentiability and continuity	134-194

25-27	Differentiability of a real	Rolle's theorem, Lagrange's mean value theorem,	T1 Ch-4
	valued function	Cauchy's mean value theorem	134-194
28-32	Differential Calculus	Successive differentiations, Leibnitz's theorem,	T1 Ch-5
		Maclaurin's and Taylor's theorem.	204-246
		Types of Matrix, Systems of linear equations,	
33-34	Definition of Matrix	Row reduction and echelon forms, Linear	T 2 Ch-12
		independence, The rank of a matrix and	441-560
		applications.	
	Introduction to linear	Introduction to linear transformations, The matrix	T 2 Ch-12
35-37	transformations,	of a linear transformation, Matrix operations,	441-560
		Determinants.	
		The inverse of a matrix, Characterizations of	T 2 Ch-12
38-40	Inverse of a matrix	invertible matrices	441-560
41-43	Eigen values and Eigen	Eigen vectors and Eigen values of a linear	T 2 Ch-12
	vectors	transformation, Characteristic polynomial and	441-560
		Cayley–Hamilton theorem, Minimal polynomial.	

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	20.09.2022	1-12	СВ
Test 2	60 Minutes	8	18.10.2022	13-28	СВ
Test 3	60 Minutes	8	18.11.2022	29-43	OB
Quizzes (2)	20 Minutes each	20	**	**	СВ
Comprehensive Exam	3 Hours	56	19.12.2022	1-43	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. SHANTI SWARUP DUBEY Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC 114	Computer Science I (Computer Organization)	4	2	5

Instructor-in-charge: Ms. NISHA THAKUR

Learning Outcome:

After successful completion of the course student will be able to:

1. To understand basic concepts and implementation of Computer Organization.

2. To understand about Number Systems, logic gates, Boolean algebra and Advanced Concepts

understand about combinational & Sequential Circuits and its working architecture.

Textbook T1	Computer Fundamental, Pradeep K. Sinha Sixth Edition BPB Publication.
Reference Book(s) R1	Computer Architecture & Organization by Moriss Manno, 3rd edition, Print ice Hall of India Pvt. Ltd.
R2	Digital Computer electronics: An Introduction to microcomputers by Albert Malvino and Jerald Brown, Tata Mc Graw Hill.
NPTEL	http://www.nptelvideos.in/2012/11/computer-organization.html
SWAYAM	https://onlinecourses.swayam2.ac.in/cec19_cs06/preview

Lecture-wise-plan:

Lect Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
1-2	Introduction to Computer Organization	Computer system concepts, Computer architecture	T1 : Chap 1, Chap 2
3-6	Concept of Data	Concept of data & data Storage, Types of programming languages	T1 : Chap 12
5-9	Computer Number Systems	Decimal numbers, binary numbers, Octal, Hexadecimal	T1 : Chap 3
10-12	Binary arithmetic & Conversion	binary arithmetic, 1's and 2's complements, inter-conversion of number system	T1 : Chap 5
13-17	Digital codes	Binary coded decimal (BCD), Gray code, Excess-3 code, Format of ASCII code.	T1 : Chap 4
20-25	Logic Gates	Positive and negative logics, NOT gate, OR gate, AND gate, NAND gate, NOR gate, EX-OR and EX-NOR gates	T1 : Chap 6
26-28	Circuit diagram and Universal Gates	Truth table, Circuit diagram, universal property of NAND and NOR gates.	T1 : Chap 6

29-32	Boolean Algebra	Boolean operation, logic expressing, rules and laws of Boolean algebra	T1 : Chap 6
32-36	Simplification & K-Map	Dorgan's theorems, simplification of Boolean expression using Boolean algebra techniques, Karnaugh map techniques	R1 : 1.4
37 - 40	Combinational & Sequential Circuits	Half adder, Full adder, Multiplexer, Flip-Flops, registers, Shift registers, counters	R1 : 1.5-1.7

Computer Science I (Lab)

S. No.	Name of Experiment
1	To verify the Truth Table of Basic Logic Gates (NOT/OR/AND) using Breadboard.
2	To verify the Truth Table of Universal Gates (NAND/NOR) using Breadboard.
3	To create AND gate using NOR Gate (s).
4	To create AND gate using NOR Gate (s).
5	To create OR gate using NAND Gate (s).

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lecture No)	Remarks
Test 1	60 Minutes	17	20.09.2022	1-14	СВ
Test 2	60 Minutes	17	18.10.2022	15-25	СВ
Test 3	60 Minutes	16	18.11.2022	26-40	OB
Quizzes (2)	20 Minutes each	10	**	**	СВ
Comprehensive Exam	3 Hours	40	16.12.2022	1- 40	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. NISHA THAKUR Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC 115	Botany I (Plant Diversity)	4	2	5

Instructor-in-charge: Ms. YUKTI DEWANGAN

Learning Outcomes:

- 1. This course is offered in the first semester for the first year students of bachelor of sciences.
- 2. To understand the general aquatic plant character like algae.
- 3. To understand the cellular structure of fungi.
- 4. To understand the character and structure of bryophyte and pteridophyta.
- 5. To understand the cellular structure of gymnosperm

Textbook (s) T1	Structure, classification, reproduction of algae and bryophyte, B. R. Vashishtha Botany for degree student's bryophyte.
T2	General Character, classification, economical features of Mastigomycotina, Unified Botany -1^{st} year
Т3	General features of classification, reproduction in cycas pinus and ephedra, B.P. Pandey, Botany for degree students, Bsc 2 nd year
T4	Comparative account of cycas, pinus, N.C. Kumar Botany Volume-1

Lecture-wise plan:

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1-2		Introduction of plant diversity and general characteristic of plant and algae cellular structure and reproduction of volvox	
3-5	To understand the general aquatic plants character like algae	Introduction, systematic classification of , thalus structure of , vegetative, asexual and sexual structure of oedogonium. Introduction classification reproduction in vaucheria	T1: 118-198, 330-379, 468
6-7		Classification thallus structure reproduction and life cycle of ,Ectocarpus and polysyphonia.	

8-12	To understand the cellular	General Characters, clsassification and economic important features and life cycle of Mastigomycotina Phytopthora; Zygomycotina- Mucor	T2: 59-87
13-15	structure of fungi	Ascomycotina- Saccharomyces; Bsidiomycotina- Puccinia, Deuteromycotina- Collectotrichum	
16–18		General account of Lichens	
19-20	To understand the structure and character of bryophyta	Outline of Classification and importance of bryophtyes. Structure, reproduction and classification of Hepaticopsida (Marchantia)	T1: 1-17 33-41
21-23		Structure, reproduction, and classification of Anthocerotopsida(Anthoceros), Bryopsida (Funaria)	T1: 226-248 322-360
24-25		General Character of Psilopsida, Lycopsida	
26-27	To understand the	General Character and structure of reproduction pteropsida,	T1: 226-248
28-29	cellular structure of pteridophyta	General character Structure and reproduction in Lycopodium, Selaginella.	322-300
30-31		General character Structure and reproduction in Equisetum and Marsilea.	
32-35	To understand the cellular structure in	General feature of Gymnosperm and their classification. Reproduction in cycas.	T3: 49-84
36-40	gymnosperms	General character classification and reproduction in Pinus and Ephedra.	T3:85-129 130-163

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	20.09.2022	1-15	СВ
Test 2	60 Minutes	8	18.10.2022	16-30	СВ
Test 3	60 Minutes	8	18.11.2022	31-40	OB
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exam	3 Hours	56	19.12.2022	1- 40	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. YUKTI DEWANGAN Instructor-in-charge

Faculty of Science

First Semester, 2022–2023

Course Handout

Course No	Course Title	L	Р	U
SC210	English Language - I	3	0	3

Instructor-in-charge : Mr. ZAFIR KHAN

Learning Outcomes: After successful completion of the course student will be able to

- 1. Understand and speak English
- 2. Write correct English.
- 3. Write effective formal letters
- 4. Participate in Group discussion and put their points effectively.
- 5. Understand and develop a liking for learning English

Text book	
Reference books R1	English Language Skills-I by Aruna Koneru
R2	English Language Skills-II by Aruna Koneru
R3	Soft Skills- K. Alex

Lecture-wise Plan

Lecture Nos	Learning Objective	Topics to be covered	Reference
1	Learning to pronounce words	Word Accent,	R1, R2, R3
2		Word Accent,	R1, R2, R3
3,4,5,6	Learning to read sentences correctly	Sentence Accent	R1, R2, R3
7,8,	Learning to participate in debate	Effective Speech, Debate	R1, R2, R3
9,10,11	Learning discussion strategy	Group Discussion	R1, R2, R3

12,13,14,15,16	Learning writing skills	Writing Paragraphs, Note Making, Precise writing and Summary writing.	R1, R2, R3
17,18,19,20,21	Mastering formal communication	Enquiries and Quotation letters, Orders and acknowledgement letters, Complaint and adjustment letter, Sales letter and circulars.	R1, R2, R3
22	Learning correct English	Learning Spelling,	R1, R2, R3
23		Punctuation,	R1, R2, R3
24		Common Error in English	R1, R2, R3
25	Learning to master English	English for competitive examination (For written test & interview skill	R1, R2, R3
26-40	Practical sessions (presentation & participation)	Students practical for practicing debate, group discussion, presentation, writing effective letters	Practical session

Classroom Practical

S. No	Name of the Practical
1	Debate, Group Discussion & Presentation
2	Preparation and presentation on subject based and current topic
3	Writing practice for formal communication

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	16	06.09.2022	1-11	СВ
Test 2	60 Minutes	17	17.10.2022	12-21	СВ
Test 3	60 Minutes	17	17.11.2022	22-40	OB
Practical	Throughout the Semester	10	**		СВ
Comprehensive Exam	3 Hours	40	12.12.2022	1- 40	СВ

** To be announced in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Mr. ZAFIR KHAN Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC 211	Physics III (Wave & Optics)	4	2	5

Instructor in-charge: Dr. ANIL KUMAR VERMA

Learning Outcomes:

Physics III form the first half of a two-semester comprehensive course on core level physics to be taught to all Bachelor of Science (Mathematics) students.

The course aims at:-

- 1. Developing an understanding of the basic principles of Optics
- 2. Developing the detailed knowledge about the interference, diffraction and polarization.
- 3. Improving the concepts geometrical optics also.

Textbook (s) T1	Unified Physics for B.Sc. 1 st by R.P. Goyal, Shivlal Agrawal & Company
T2	Engineering Physics by Dattu Prasad Ramanlal Joshi, McGraw Hill (Seventh Reprint) 2016
Reference book(s) R1	Physics for Degree Students B.Sc. First Year by C.L. Arora, S. Chand Publication
R2	A Textbook of Engineering Physics, by Avadhanulu M.N. & Kshirsagar P.G., 2010 Edition

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos. of Text Book)
1-3		Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves	T1 (5.1)
4-5		Plane Progressive (Travelling) Waves. Wave Equation.	T1 (5.2)
6-8	To learn Basics of Waves and Interference	Particle and Wave Velocities. Superposition of two perpendicular Harmonic Oscillations	T1 (5.5, 6.1, 6.2)
9-12		Graphical and Analytical Methods. Lissajous Figures (1:1 and 1:2) and their uses.	T1 (6.4, 6.5)
13-15		Interference: Division of amplitude and wave front. Young's double slit experiment	T2 (1.1 – 1.9)

16-17		Fresnel's Bi-prism. Phase change on reflection	T2 (1.10)
18-19	Understanding formation of interference patterns and its app	Stokes' treatment. Interference in Thin Films, parallel and wedge-shaped films	T2 (1.12-1.13)
20-21		Newton's Rings: Measurement of wavelength and refractive index.	T2 (1.16)
22-23		Fraunh offer diffraction: Single slit.	T2 (2.1-2.5)
24-27	Diffraction patterns and its application	Fraunh offer diffraction: N slit.	T2 (2.6)
28-33		Resolving power of grating	T2 (2.7)
34-35	Understanding ray optics for a system of lenses	Geometrical Optics, Cardinal points of an coaxial optical system, Newton formula	R2 (40.1-40.9)
36-39	Learning about the Polarization	Polarized light, Polarization by Reflection, Brewster's law, Malus Law, Double refraction, Uniaxial and Biaxial Crystals	T2 (4.1-4.6)
40-42	and its application	Light propagation in Uniaxial Crystals, Principal Section, Principal Plane, Nicole Prism, Types of Polarized light, Phase Retardation	T2 (4.7-4.9)

Evaluation Scheme: Physics I (Lab)

S. No.	Name of Experiment
1	To Find the refractive index of the material of prism using spectrometer.
2	To determine the dispersive power of prism using spectrometer.
3	To determine the grating element of a grating using spectrometer.
4	To verify Kirchhoff's Law of Voltage and Current.
5	Resonance in LCR circuit
6	I-V Characteristic of a Solar Cell
7	I-V Characteristic of PN Junction Diode.
8	To find the frequency of a wave inputted from a function generator using Cathode Ray Oscilloscope (CRO)

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	8	06.09.2022	1-12	СВ
Test 2	60 Minutes	8	18.10.2022	13-26	СВ
Test 3	60 Minutes	8	18.11.2022	27-42	OB
Lab	Throughout the Semester	20	*TBD	-	СВ
Comprehensive Exam	3 Hours	56	16.12.2022	1-42	СВ

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

** TBD – To be decided

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. ANIL KUMAR VERMA Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
HSC 211	Physics (H1) (Elements of Spectroscopy)	4	2	5

Instructor-in-charge: Mr. DHARMENDRA KUMAR

Learning Outcomes:

(Physics H1) form the first half of a two-semester comprehensive course on core level physics to be taught to all the students of B.Sc. (H).

The course aims at:-

1. Developing an understanding of the basic principles of Spectroscopy.

2. Developing the application of concepts to problems of practical interest.

3. Improving the concepts and improving the problem solving skills of students.

Textbook (s)	Atomic and Molecular Spectra : LASER, by Raj Kumar, Kedarnath Ram nath
T1	Publishers, Reprint (2018)
Reference book (s) R1	Introduction to Magnetic Resonance Spectroscopy ESR, NMR, NQR by D. N. Sathya Narayana,

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page No of Text Book)
1-3		Bohr's Model of an atom	Ch. 01
4-5	To understand the various atomic models.	Hydrogen spectra, Somerfield's Model, Vector atom model of an atom	Ch. 02
6-7		Spectroscopic Terms, L-S coupling, J-J Coupling, Selection Rule for LS	Ch. 09
8-12	To learn the spectroscopy terms and coupling	JJ Coupling, Equivalent and Non- equivalent electrons	Ch. 09
13-15		Land g Factor, Term separation in Doublet, Alkali	Ch. 09
16-17	Understanding Spectral analysis	Atom Spectra, Zeeman Effect	Ch. 12
18	under the presence of external	Paschen Back Effect	Ch. 12
19	electric and magnetic field	Stark Effect	Ch. 13

20-24	Understanding the Hyperfine splitting	Hyperfine Splitting, Broadening of Spectral line, X-ray spectra	Ch. 16
25-29		Rotation spectroscopy: Selection rules, intensities of spectral lines, determination of bond lengths of diatomic and linear triatomic molecules, isotopic substitution.	Ch. 17-18
30-32		Vibrational spectroscopy: Classical equation of vibration, computation of force constant, amplitude of diatomic molecular vibrations, an- harmonicity,	Ch. 19
33-34	Learning molecular spectra	Fundamental frequencies, overtones, hot bands, degrees of freedom for polyatomic molecules, modes of vibration	Ch. 19
35-36		Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity difference, rule of mutual exclusion.	Ch. 20
37-39		Electronic spectroscopy: Franck- Condon principle, electronic transitions, singlet and triplet states, fluorescence and phosphorescence.	Ch. 21
40-42	Learning some techniques of characterization of materials	Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of NMR spectroscopy.	R1 (PART 02 (Ch. 10-15))

Physics I (Lab)

S. No.	Name of Experiment
1	Performance characteristics of a spectrophotometer.
2	Spectrophotometric analysis of a mixture.
3	Study the absorption of monochromatic light using colorimeter.
4	To verify the Beer-Lambert's law of absorption.

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	08.09.2022	1-12	СВ
Test 2	60 Minutes	8	19.10.2022	13-26	СВ
Test 3	60 Minutes	8	19.11.2022	27-42	OB
Lab	Throughout the Semester	20	TBA*	-	СВ
Comprehensive Exam	3 Hours	56	21.12.2022	1-42	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Mr. DHARMENDRA KUMAR Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC212	Chemistry III (Physical Chemistry)	4	2	5

Instructor-in-charge: Ms. YUKTI DEWANGAN

Learning Outcomes:

This course is offered in the first semester for the Second year students of bachelor of sciences.

- 1. Pinpoint the historical aspects of development of quantum mechanics
- 2. Understand and explain the differences between classical and quantum mechanics
- 3. Understand the idea of wave function
- 4. Understand the uncertainty relations
- 5. Explain thermodynamically the operation of a concentration cell, and be able to predict the concentration in the cell based on the cell potential

Textbook (s) T1	The Elements of Physical Chemistry, Peter Atkins and Julio de Paula, Fourth edition, Oxford University Press, 2005.
T2	Concise Inorganic Chemistry, J.D. Lee, Black Well Science, OUP, 5th Edition, 1996
Т3	Organic Chemistry, R.T. Morrison and R. Boyd, Prentice- Hall, Sixth Edition, 2002.
T4	Physical Chemistry, G.K. Vemulapalli, PHI learning private limited, 2002.
Reference book (s) R1	Physical Chemistry, Ira N. Levine, Fifth Edition, Tata McGraw-Hill, 2002.
R2	Ernest L Eliel, Stereochemistry of Carbon Compounds, Tata McGraw-Hill Edition, 2002.
R3	Huheey, Keiter & Keiter, Inorganic Chemistry, Pearson Education, 2003.

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos. of Text book)
1-3	To understand the transformation of energy from heat into work and vice versa	Thermodynamics - first law Work & heat, internal energy and enthalpy.	T1:2.1 – 2.8
4-6	To understand the role of enthalpy in chemistry	Thermo chemistry Enthalpy changes accompanying Physical Change and Chemical Change	T1:3.1 – 3.7
7-10	To understand the concept of entropy and Gibbs energy	Thermodynamics – Second Law Entropy and second law, absolute entropies and Third law, The Gibb's energy	T1: 4.1 – 4.11
11 - 14	To understand the redox reactions involved in electrochemical cells, cell potentials and applications of standard potentials	Electrochemistry - The migration of ions, electrochemical cells, The cell potential. Application of standard potentials	T1:9.2 – 9.13
15–18	Principles of quantum	Elementary Quantum Mechanics-I Black body radiation, Planck's radiation law, photoelectric effect	R1: 591 – 594
19 -20	mechanics to calculate observables on known wave functions.	Bohr's model of hydrogen atom and its defects.	T2: 4-10
21-24		De Broglie Hypothesis, Heisenberg's uncertainty principle, Sinusoidal wave equation,	R1: 595-599
25-28	Solve time-dependent and time-	Schrodinger's wave equation and its importance, Postulates of quantum mechanics.	T4: 366-373
29 - 30	for simple potentials.	Particle in a one dimension box.	R1: 606-610
31-33		Quantum numbers and their importance, radial wave function, angular wave function.	T2: 15-20

34-35	Knowledge about fundamental quantum mechanical process for forming of Molecular orbitals from	Molecular orbital theory (basic idea), Criteria for forming M.O. and A.O wave functions,	T2: 98- 117
36 - 38	Atomic orbitals.	Physical picture of bonding and and ant bonding wave function, Concept of $\pi,\pi^*,\sigma,\sigma^*$ orbitals and their characteristics, Construction of M.O's by LACO-H2 ion	T2: 89 – 98
39 - 40		Hybrid orbitals-sp,sp2 , sp3 Introduction to valence bond model of H2	T2: 80-87

Chemistry III (Lab)

S. No.	Name of Experiment
1	To determine the enthalpy of neutralization of strong acid (hydrochloric acid) and strong base
1	(sodium hydroxide).
2	T To determine the composition of a given binary mixture (ethanol-water) from the study of the
2	viscosity-composition curve at lab temperature.
2	To determine the strength and normality of given acid solution (approx. <i>N</i> 10 HCL) by titrating it
3	against standard 0.5 Na OH solution conduct metrically.
	To determine the strength of given weak acid (CH ₃ COOH) solution by titrating it against standard
4	base (Na OH) solution conduct metrically.
5	To detect the presence of elements in the given organic compound.
-	To determine the strength of given HCL solution by titrating it against Na OH solution using pH
6	meter
7	To standardize the given acid solution like (HCL) pH metrically
8	To determine the strength of given mono basic acid (like HCL) potentiometric ally
9	Determine experimentally the partition coefficient of I2 in CCI4 and water.
10	To determine the enthalpy of neutralization of a weak acid (say acetic acid) versus strong base (say
10	Na OH) and determine the enthalpy of ionization of the weak acid.

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	07.09.2022	1-15	СВ
Test 2	60 Minutes	8	17.10.2022	16- 30	СВ
Test 3	60 Minutes	8	17.11.2022	31-40	OB
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exam	3 Hours	56	14.12.2022	1- 40	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. YUKTI DEWANGAN Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
HSC212	Chemistry (Honors) (Spectroscopy I)	4	2	5

Instructor-in-charge: Dr. PIYUSH THAKUR

Learning Outcomes:

This course is offered in the first semester for the second year students of bachelor of sciences.

- 1. To understand the basic principles of spectroscopy
 - 2. Recognize spectroscopy in microwave, Rotational spectra of rigid diatomic molecules, selection rules, interaction of spectral lines.
 - 3. Explain vibration of diatomic molecules, the vibrational spectra of diatomic molecules.
- 4. Explain working principle, taking spectra and outline of UV spectroscopy device.
- 5. understands the physical principles underlying the NMR phenomenon and realizes the possibilities of NMR spectroscopy in analyzing the structures of molecules

Textbook (s) T1	Organic Spectroscopy, William Kemp, Third Edition, Palgrave 1991.
T2	Spectroscopy, H. Kaur, Tenth Edition, Pragati Prakashan 2015.
Reference book (s) R1	Fundamentals of molecular spectroscopy. Colin N. Banwell and Elaine M. Mccash McGraw-Hill, 2016.
R2	Applied Electran Spectroscopy for chemical analysis Ed. H. Windawi and F. I. Willey Interscience.2018

Lecture-wise plan:

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.of Text Book)
1-2	To understand the basic principles of spectroscopy	Unifying Principles: Electromagnetic radiation, interaction of electromagnetic radiation with matter absorption, emission, transmission, reflection, dispersion, polarization and scattering.	
3-5		Natural line width and natural boarding, transition probability, results of the time dependent perturbation theory, transition moment, selection rules,	T2: 1-29

6-7		Intensity of spectral lines. Born-Oppenheimer approximation, rotational, vibration & electronic energy levels.	
8-12	To understand the Rotational spectra of rigid diatomic molecules, selection rules, interaction of spectral lines	Microwave Spectroscopy: Classification of molecules, rigid rotor model, effect of isotopic substitution on the transition frequencies, non- rigid rotor, stark effect, nuclear & electron spin interaction and effect of external field. Applications.	R1:31 – 52
13-15		Photoelectron Spectroscopy: Basic principles, photo- electric effect, ionization process, Photoelectron spectra of simple molecules. Auger electron spectroscopy – basic idea.	T2: 636-649
16–18	Study of Vibrating diatomic molecule,	Infrared Spectroscopy: Review of linear harmonic oscillator, vibrational energies of diatomic molecules.	T1: 19 – 27
19-20	energy levels of a diatomic molecule, simple harmonic and harmonic	force constant and bond strengths, harmonicas, Vibration rotational spectroscopy, P, Q, R, Branches.	T2: 120-130
21-23	oscillator.	Selection rules, normal modes of vibration, group frequencies, overtones, hot bands, factors affecting the band	T2: 132 – 159
24-25	Understand the Scattering of light and Raman Spectrum	Raman Spectroscopy: Classical and quantum theories of Raman effect, Selection rules.	R1:100 – 124
26-27		Molecular Spectroscopy: Energy levels, molecular orbital, vibronic transitions, vibrational progressions and geometry of the excited states	T2: 258-262
28-29	Understand the electronic spectra of diatomic molecules	Frank - Condon principle, electronic spectra of poly atomic molecules and spectra of transition metal complexes	T2: 263- 277
30-31		Charge- transfers spectra, Electronic spectra and application.	T2: 311 – 314
32-34	Understands the physical principles	Nuclear Magnetic Resonance Spectroscopy: Nuclear spin resonance, saturation, shielding of magnetic nuclei.	
35-37	underlying the NMR phenomenon and realizes the	Chemical shifts and its measurements, factors influencing chemical shifts	
38	possibilities of NMR spectroscopy in analyzing the structures of molecules	Deshielding, spin-spin interactions.	T1: 101-155
39-40		Factors influencing coupling constant 'J" Classification, basic ideas about instrument.	

Chemistry H₁ (Lab)

S. No.	Name of Experiment
1	To determination of λ max by Job's method.
2	To verify the Beers-Lambert Law for KMnO ₄
3	To determine the percentage of Available Iron in the given sample by calorimetrically.
4	To determine the composition of a given binary mixture (ethanol-water) by calorimetrically.
5	Determination of copper by colorimetric method.
6	Study of mole ratio method by colorimetric method.
7	To verify the Beers-Lambert Law for K ₂ Cr ₂ O _{7.}

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	08.09.2022	1-15	СВ
Test 2	60 Minutes	8	19.10.2022	16-30	СВ
Test 3	60 Minutes	8	19.11.2022	31-40	OB
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exam	3 Hours	56	21.12.2022	1-40	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. PIYUSH THAKUR Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC213	Mathematics III (Differential Equation)	4	0	4

Instructor-in-charge: Dr. SHANTI SWARUP DUBEY

Learning Outcomes:

After successful completion of the course student will be able to

- 1. Solution of first & first degree differential equation.
- 2. Solution of Exact differential equations.
- 3. Second Order Linear Differential Equations
- **4.** Basic concept power series method.

Text Book T	Ordinary & Partial Differential Equation, M D Raisinghania, S Chand & Company, New Delhi
Reference book(s) R1	B. Rai, D. P. Choudhury & H. I. Freedman (2013). A Course in Ordinary Differential Equations (2 nd edition)
R2	Daniel A. Murray (2003). Introductory Course in Differential Equations, Orient.

Lecture wise plan

Lecture Nos.	Learning Objective	Topics to be covered	Reference (chapter/sec./Page Nos of Text/Ref. Books)
		Basic concepts and genesis of ordinary	
1-4	First Order Differential	differential equations,	TI Ch-1
	Equations		1.3-1.35
		Differential equations of first order and	
5-8	To find the order and degree of a	first degree.	T1 Ch-2
	differential equation		2.1-2.76
		Equations in which variables are separable,	
9-14	Homogeneous Linear differential	Homogeneous equations, Linear	T1 Ch-2
	Equation	differential equations and equations	2.6
		reducible to linear form	
15-19	Exact differential equations	Exact differential equations, Integrating	T1 Ch-2
		factor, First order higher degree equations	2.12
		solvable for x, y and p.	
20-21	Picard's method of successive	Picard's method of successive	T1 (Part-II) Ch-1
	approximations	approximations and the statement of	1.3-1.25
		Picard's theorem for the existence and	

		uniqueness of the solutions of the first	
		order differential equations.	
		Statement of existence and uniqueness	
22-26	Second Order Linear Differential	theorem for linear differential equations,	T1 Ch-10
	Equations	General theory of linear differential	10.1-10.58
		equations of second order with variable	
		coefficients;.	
	Method of variation of	Method of variation of parameters and	
27-30	parameters	method of undetermined coefficients,	T1 Ch-7
		Reduction of order, Coupled linear	7.1-7.26
		differential equations with constant	
		coefficients	
	Higher Order Linear Differential	Principle of superposition for a	
31-33	Equations	homogeneous linear differential equation,	T1 Ch-10
		Linearly dependent and linearly	10.1-10.58
		independent solutions on an interval,	
		Wronskian and its properties	
34-38	Series Solutions of Differential	Power series method, Legendre's equation,	T1 CH7,7.1-7.6,
	Equations	Legendre polynomials, Rodrigue's	Ch-9
		formula, Orthogonality of Legendre	9.1-9.50
		polynomials, Frobenius method,	
39-43	Bessel's equation, & Recurrence	Bessel's equation, Bessel functions and	T1 Ch-11
	relations.	their properties, Recurrence relations.	11.1-11.45

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	8	07.09.2022	1-12	СВ
Test 2	60 Minutes	8	17.10.2022	13-28	СВ
Test 3	60 Minutes	8	18.11.2022	29-43	OB
Quizzes (2)	20 Minutes each	20	**	**	СВ
Comprehensive Exam	3 Hours	56	19.12.2022	1-43	CB

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. SHANTI SWARUP DUBEY Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
HSC213	Mathematics (H1) (Set theory and Metric Spaces)	4	0	4

Instructor-in-charge: Ms. YOGITA CHANDRAKAR

Learning Outcomes:

After successful completion of the course student will be able to

- 1. About SETs.
- 2. Metric Spaces.
- 3. Compactness and Connectedness of SETs

Text Book(T)	Mathematical Analysis, S C Malik and Savita Arora.
Reference Book(s)	S. Kumaresan (2011). Topology of Metric Spaces.
R2	Set Theory and Metric Spaces by Irving Kaplans

Lecture wise plan

Lecture	Learning Objective	Topics to be covered	Reference (chapter/sec./Page
Nos.			Nos of Text/Ref.
			Books)
		Definitions of Set, finite and Infinite set,	
1-10	Set Theory	Countable and Uncountable Set, Zorn's	T /Ch-1/1-43
		lemma, Cantor's theorem, POSET.	
		Definitions and examples of Metric spaces.	T /Ch-19/ 706-731
11-22	Metric Spaces	Point Set Topology of Metric spaces	
		Cauchy and Convergent sequences,	
23-30	Complete Metric Spaces and	Completeness of Metric spaces, Dense	T/ Ch-19/732-754
	Continuous Functions.	sets, Continuous and Uniformly	
		continuous functions	
31-35	Compactness	Compact Spaces, sequential compactness,	T/ Ch-19/ 755-771
		BWP, Heine-Borel theorem, Totally	
		bounded sets, Equivalence of compactness	
		and sequential compactness, continuous	
		function on compact spaces.	
36-41	Connectedness	Separated set, connected and disconnected	T/ Ch-19/ 772-780
		sets, continuous functions on connected	
		sets,	

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	17	08.09.2022	1-12	СВ
Test 2	60 Minutes	17	19.10.2022	13-28	СВ
Test 3	60 Minutes	16	19.11.2022	29-41	OB
Quizzes (2)	20 Minutes each	10	**	**	СВ
Comprehensive Exam	3 Hours	40	21.12.2022	1- 41	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. YOGITA CHANDRAKAR Instructor-in-charge

Faculty of Science First Semester, 2022-2023 Course Handout

Course No.	Course Title	L	Р	U
SC-310	Personality Development	3	0	3

Instructor-in-charge: Ms. EKTA DEWANGAN

Learning Objectives

After successful completion of the course students will be able to

- 1. To take up the leadership responsibilities.
- 2. To improve communication skill and self-confidence by arranging and conducting the interviews.
- 3. To improve time management skill by adhering to research timetable and making amendments in the timetable whenever its necessary to do so.
- 4. To build self-esteem and self-confidence.

Reference Books	Social and Personality Development by David R Shaffer	
R1		
R2	Education and Personality Development by P. Krishnan Manoharan	
R3	The Power of Positive Thinking by Norman Vincet	

Lecture-wise Plan

Lecture Nos	Learning Objective	Topics to be Covered	Reference
1	Introduction to Personality Development	Introduction to Personality Development	R1, R2,R3
2	To know different determinants which contribute in personality development	Determinants of personality development	R1,R2,R3
3,4,5,6	To know and understand their strength and weakness	Analyzing strength and weakness, corporate theories related to it	R1,R2.R3
7,8	Effectively built their body language	Body Languages	R1,R2,R3
9,10,11	To communicate effectively with others	Communication Skills	R1,R2,R3
12.13.14.15.16	Introduce leadership quality, tem building and performance appraisal	Techniques in personality developments Stage2	R1,R2,R3

17,18,19,20,21	Motivation, Introspection and self-assessment, Interpersonal relationships, stress management	Techniques in personality developments Stage 3	R1,R2,R3
22	To know about time management	Time managements, importance and needs	R1,R2,R3
23	Learn about conflict management	Conflict managements	R1,R2,R3
24		Levels of conflict	R1,R2,R3
25	Managing conflict	Managing conflict	R1,R2,R3
26-40	Practical session, presentation and participation	Practical sessions presentation & participation	

Classroom Practical

S. No.	Name of the practical	
1	Debate, Group discussion and presentation	
2	Communication skills training	

Evaluation Scheme:

Student evaluation is based on the series of Tests and Practical session conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	16	07.09.2022	1-11	СВ
Test 2	60 Minutes	17	18.10.2022	12-21	СВ
Test 3	60 Minutes	17	18.11.2022	22-40	OB
Practical	Throughout the Semester	10	**		СВ
Comprehensive Exam	3 Hours	40	14.12.2022	1-40	СВ

** To be decided in class

Make-up Policy: up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual of students to attend all sessions, to take prescribed assessment tests, tests and comprehensive examinations, etc.

Date: 02/08/2022

Ms. EKTA DEWANGAN Instructor-in-charge

Faculty of Science First Semester, 2022–2023 Course Handout

Course No	Course Title	L	Р	U
SC 311	Physics V (Mechanics of Rigid Bodies and Fluids)	4	2	5

Instructor in-charge: Mr. DHARMENDRA KUMAR

Learning Outcomes:

Physics \overline{V} form the first half of a two-semester comprehensive course on core level physics to be taught to all B.Sc. students.

The course aims at:-

- 1. Developing an understanding of the basic principles of Elasticity and rigid mechanics & fluid mechanics.
- 2. Developing the application of concepts to problems of practical interest.
- 3. Improving the concepts and improving the problem solving skills of students.

Textbook (s) T1	Unified Physics for B.Sc. 1 st by R.P. Goyal, Shivlal Agrawal& Company
Reference book (s) R1	Physics for Degree Students B.Sc. First Year by C.L.Arora, S. Chand Publication

Lecture-wise plan:

Lecture Nos.	Learning objectives Topics to be covered		Reference (Ch./Sec./ Page Nos.of Text Book)
1-3		Elasticity, Effect of temperature and impurities on elasticity of a substance; Small deformation; Stress and strain; Hooke's Law; Elastic constants for an isotropic solid	Page 308- 311 (T1)
4-5	Understanding Basics of Elasticity and its modulus(s)	Young's modulus, Modulus of Rigidity, Poisson's ratio	Page 311- 314 (T1)
6-8		Relationship between the various elastic moduli	Page 315- 319 (T1)
9-10		Limiting values of Poisson's ratio, experimental determination of Poisson's ratio	Page 319- 321 (T1)
13-15		Torsion of a cylinder, strain energy of twisted cylinder, Determination of modulus of rigidity of a thin rod by static method	Page 321- 325 (T1)
16-17	Learning about Bending and torsion of cylindrical shaped objects and practical examples	Torsion pendulum, Bending of beam and bending moment	Page 325- 326, 328- 330 (T1)
18-19		Cantilever, transverse oscillation of cantilever, beam supported at its ends and loaded in the middle	Page 331- 333 (T1)

		Determination of Young's modulus of a bean by	
		bending method, determination of Young's	Dec. 224
20-21		modulus, modulus of rigidity and Poisson's	Page 334- 336 (T1)
		ratio of material of a wire by Searle's method.	550 (11)
		Rotational and Irrigational flow, Equation of	
		continuity, Energy of a flowing fluid, Euler's	D 252
21-23		equation of motion for a non-viscous fluid and	Page -352- 357 (T1)
	Understanding Basic fluid	its integration	557 (11)
	mechanics and fluid flow	Bernoulli's theorem, applications based on	
	equations	Bernoulli's theorem-Venturimeter, Torricelli's	D 257
24-27		theorem, Shape of the wings of the aero plane.	Page 35/- 361 (T1)
		Viscous flow of fluids	501 (11)
		Effect of pressure and temperature on the	
		coefficient of viscosity, Flow of liquid through a	
		capillary tube, Poiseuille's formula,	
		experimental determination of coefficient of	
		viscosity of a liquid –constant pressure	
20.22	Learning about Viscosity and	difference method, variable pressure method.	Daga 266
28-33	related laws	Two capillaries connected in series and parallel.	373 (T1)
		Motion of spherical body in viscous fluid,	0,0 (11)
		derivation of Stock's law using dimensional	
		method, expression for terminal velocity, falling	
		of rain drops, falling of soldier with parachute.	
		Intermolecular forces, cohesive and adhesive	
34-35		forces, with some example in daily life, Surface	Page 366-
54-55		tension, explanation of surface tension using	373 (T1)
		intermolecular forces. Surface energy	
		Effect of temperature and impurities on the	
36-39		surface tension, some other examples of surface	Page 387-
50-57		tension-small drop of a liquid are spherical	393 (T1)
	Understanding surface	while bigger are flat, Angle of contact	
	tension, related terminologies	Pressure difference between the two sides of a	
		curved liquid surface, to derive an expression	
40-42		for excess of pressure on the curved surface,	
		excess pressure inside spherical drop, excess	Page 394-
		pressure inside an air bubble. Determination of	400 (T1)
		surface tension of a liquid using capillary rise	
		method	

Evaluation Scheme: Physics I (Lab)

S. No.	Name of Experiment
1	To determine the weight of unknown object using parallelogram law of vector edition.
2	To find the value of Young's modulus of a wire using Searle's Apparatus.
3	To find the value of Poisson's ratio of a rubber
4	To verify Newton's law of cooling.
5	To find the moment of inertia of a fly wheel.
6	To determine the frequency of alternating current using a sonometer and an electromagnet.

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	06.09.2022	1-12	СВ
Test 2	60 Minutes	8	18.10.2022	13-26	СВ
Test 3	60 Minutes	8	18.11.2022	27-42	OB
Lab	Throughout the Semester	20	*TBD	-	СВ
Comprehensive Exam	3 Hours	56	16.12.2022	1-42	СВ

*TBD – To be decided

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Mr. DHARMEDRA KUMAR Instructor-in-charge

Faculty of Science First Semester, 2022 2023 Course Handout

Course No	Course title	L	Р	U
HSC311	Physics (H3) (Photonics)	4	2	5

Instructor-in-charge: Mr. DHARMENDRA KUMAR

Learning Outcomes:

(Physics H3) form the first half of a two-semester comprehensive course on core level physics to be taught to all the students of B.Sc. (H).

The course aims at:

- 1. Developing an understanding of the basic principles of Photonics.
- 2. Developing the application of concepts to problems of practical interest.
- 3. Improving the concepts and improving the problem solving skills of students.

Textbook(s)	Photoelectric an introduction:- Wilson and Hawkes PHI
T1	
Reference book(s)	Optical electronics by Ghatak
R1	

Lecture wise plan

Lecture no.	Learning objectives	Topics to be covered	Reference (Ch./Sec/ Page Nos.of Text Book)
1-2	To understand concepts of light	Theory of Light, Light as Electromagnetic wave	Ch.no.1
3-4	Levels of Management	Polarization of Light, Principle of superposition, Interference,	P. No.10-15
5	Management Thought and Thinkers	, Diffraction, Scattering	Pg.no.20-22
6-7	Robert Owen, F.W.Taylor	Photon nature of light, Light wave in homogeneous medium,	P. No25
8-9	Henry Fayol etc.	Plane Electromagnetic Wave, Maxwell's Wave equation and Diverging Waves.	Ch.no1 P. No.26-30
10-13	To learn the working principles of Optical display devices	LED- Basic principle of operation, radiative recombination process,	Chapter.no-3 P. No44

14	Nature and purpose of organizing	The spectrum of recombination process, the internal quantum efficiency, double hetrostructure	P. No45-47
15	Nature& Scope of Staffing	response time of LED, carrier configuration and modulation bandwidth, edge emitting LED	P. No- 48
16	Manpower Planning	LED design. Liquid Crystal Display - construction, basic principle of emission,	P. No49-55
17-18	Organization structure	Plasma Display- construction, basic principle of emission.	P. No55-56
19-20	To study the different characteristics of Photovoltaic devices	Introduction, Solar Energy Spectrum, Photovoltaic Device Principles	ChP. No6 P. No.256-258
21-23	Organization	p-n junction Photovoltaic I-V Characteristics, Solar Cell parameter	P. No -260-265
24-26	Line and Staff authority	Series resistance & equivalent circuit, Homo junction Solar Cells	P. No266-270
27-30	Delegation of authority	Heterojunction Solar Cells, Thin Film Solar Cells, Material requirements.	P. No - 270-275
31-32	To study photo detectors in detail	General Principles, quantum efficiency	Chapter-7 P. No 290-291
33	Leadership theories	silicon P-N photodiodes, hetrojuncton photodiodes,	P. No - 293-295
34-35	Communication,	schottkey barrier diode, P-I-N photodiodes	P. No-296-297
36	Diversity	Avalanche photodiodes and phototransistors.	P. No298-300
37-38	To give basic introduction of Organic Electronics	Organic versus Inorganic solids, Molecular materials,	Chapter -10 P. No401-403
39-40	Meaning, Process and Control Techniques,	Organic Semiconductors	P. No 406-409
41-43	Process and Control Techniques	Electronic states in conjugated molecules, Conjugated polymers	P. No410- 415

Physics H3 (Lab)

S. No	Name of Experiment
1	Characteristics of Solar cell
2	Characteristics of LED
3	To study the characteristics of photovoltaic cell
4	Simulation software practical

Evaluation Scheme:

Student evaluation is based on the series of Tests and Lab Tests conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	8	08.09.2022	1-12	СВ
Test 2	60 Minutes	8	19.10.2022	13-26	СВ
Test 3	60 Minutes	8	19.11.2022	27-43	OB
Lab	Throughout the Semester	20	**	-	СВ
Comprehensive Exam	3 Hours	56	21.12.2022	1-43	СВ

****** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Mr. DHARMENDRA KUMAR Instructor in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC312	Chemistry V (Analytical Chemistry)	4	2	5

Instructor-in-charge: Dr. PRATIK JAGTAP

Learning Outcomes:

This course is offered in the first semester for the Third year students of bachelor of sciences.

- 1. Explain the fundamentals of analytical chemistry and steps of a characteristic analysis.
- 2. Expresses the role of analytical chemistry in science.
- 3. Compare qualitative and quantitative analyses.
- 4. Expresses the quantitative analysis methods.
- 5. Expresses the qualitative analysis methods.

Textbook (s) T1	Textbook of quantitative Chemical Analysis, Vogel's, Sixth Edition, Pearson Education, 2003.
Т2	Research methodology methods and techniques, C.R. Kothari and Gaurav Garg, New Age international publishers, 2019.
ТЗ	University Chemistry, Bruce M. Mahan and Rollie J. Meyers, AWL publication, fourth edition, 1998.
Reference book (s) R1	Physical Chemistry, Ira N. Levine, Fifth Edition, Tata McGraw-Hill , 2002.
R2	Huheey, Keiter, Inorganic Chemistry, Pearson Education, 2003.

Lecture wise plan:

Lecture No	Learning Objectives	Topics to be covered	Reference(Chap/Sec/P.No Text Book/Ref.Bo
1-2	Metal Ligand Bonding In Transition Metal Complexes:	Limitations of Valence Bond Theory, an elementary idea of crystal field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes,	T2 25-44
3-5		Factors affecting the crystal field parameters. Thermodynamic and kinetic aspects of metal complexes.	T2 45-48

6-7		A brief outline of	R1 227
0 /		thermodynamic stability of	KI 227
		metal complexes and factors	
		metal complexes and factors	
		affecting the stability of square	
		planar complexes	
		Introduction, characteristic	T1 3-24
		properties(electronic	
8-12		configuration, complex	
		formation, magnetic property,	
		formation of colour, catalytic	
	To understand the	activity, periodic properties)of	
	Chemistry of elements	d-block Elements,	
13-15	of first transition series	properties of the element of first	T1 25-70
		transition series, Relatively	
		stability of their oxidation state,	
		coordination number	
		Introduction characteristic	T1 79-80
		properties(electronic	11/2 00
16-18		configuration.	
		8,	
19-20	To understand	complex formation, magnetic	T1 85
	the Chemistry of the	property, formation of colour	
	elements of Second		
	&Third transition		
21-23	series	catalytic activity, periodic	T1 86-93
		properties) of d-block Elements,	
		properties of the element of	
		Second & Third transition series,	
24-25		Relatively stability of their	T1 94-101
		oxidation state, coordination	
		number	
26-27		Types of magnetic behaviour.	T2 58- 65
		methods of determining	
		magnetic susceptibility,	
	Magnetic Properties of	spin only formula, L-S coupling,	T2 68-74
	Transition Metal	correlation of μ_s and μ_{eff} values,	
28-29	complexes:	orbital contribution to magnetic	
		moments, application of	
		magnetic moment data for 3d	
		metal complexes. Electronic	
30-31		spectra of Transition Metal	
		complexes.	
		Types of electronic transitions,	T2 84-113
		selection rules for d-d	
		transitions, spectroscopic	
		ground states, spectrochemical	
		series. Orgel energy level	
		diagram for d ⁻ and d ⁻ states,	
		discussion of the electronic $f(T; (U, Q))^{3+}$	
		spectrum of $[\Pi (\Pi_2 \mathbf{U})_6]$	
27.24	Co ordination	Wormars coordination theory	
52-54	Compounds	werners coordination theory,	T1 174-175
35-37	Compounds	Effective atomic number	
55 51		concept, chelates.	111/0 1/0

38	Nomenclature of coordination compounds,	T1 180-183
39-40	Valence bond theory of	T1 194- 200
	transition metal complexes.	

Chemistry V (lab)

S. No.	Name of Experiment
1	Determination of concentration of Mg ²⁺ ions by EDTA using Eriochrome Black as indicator.
2	To determine the strength of ferrous ammonium sulphate (Mohr's salt) solution by using external indicator
3	Determination of the strength of given unknown oxalic acid solution by titrating it against Potassium permanganate.
4	To prepare a standard N/20 copper sulphate solution and then determine the strength of sodium this sulphate solution eudiometrically.
5	Determination of concentration of Ca^{2+} ions by EDTA using Eriochrome Black –T as indicator.
6	Preparation of acetate buffer solution (pH range 3- 6)
7	Estimation of Barium in given sample by Gravimetric Analysis
8	Estimation of Copper in given sample by Gravimetric Analysis

Evaluation Scheme:

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	07.09.2022	1-15	СВ
Test 2	60 Minutes	8	17.10.2022	16-30	СВ
Test 3	60 Minutes	8	17.11.2022	31-40	OB
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exam	3 Hours	56	14.12.2022	1- 40	СВ

** To be decided in the class

Make-up Policy: Make –up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. PRATIK K JAGTAP Instructor-in-charge

Faculty of Science First Semester, 2022–2023 **Course Handout**

Course No	Course Title	L	Р	U
HSC312	Chemistry (Honors) (D-block elements)	4	2	5

Instructor-in-charge: Dr. PRATIK K JAGTAP

Learning Outcomes:

This course is offered in the first semester for the third year students of Bachelor of Sciences.

- 1. To Metal Ligand Bonding In Transition Metal Complexes
- 2. Understand the Chemistry of elements of first transition series
- 3. To understand the Chemistry of the elements of Second & Third transition series
- 4. Understand Magnetic Properties of Transition Metal complexes

Textbook (s) T1	Chemistry for degree students, for II Year by Dr. R.L. Madan S.Chand Publication.
T2	Chemistry for degree students, for III Year by Dr. R.L. Madan S.Chand Publication.
Reference Book R1	Advanced Inorganic Chemistry by S.K. Agrawal and Keemti Lal, Pragati Publication
R2	Inorganic Chemistry 3 rd Edition G.L. Mieessler and D.A. Tarr

Lecture-wise plan:

Lecture Nos.	Learning objectives	Topics to be covered	Reference (Ch./Sec./ Page Nos.ofText Book)
1-2		Limitations of Valence Bond Theory, an elementary idea of crystal field theory, crystal field splitting in octahedral, tetrahedral and square planar complexes,	T2 25-44
3-5	Metal Ligand Bonding In Transition Metal Complexes:	factors affecting the crystal field parameters. Thermodynamic and kinetic aspects of metal complexes.	T2 45-48
6-7		A brief outline of thermodynamic stability of metal complexes and factors affecting the stability of square planar complexes	R1 227

8-12	To understand the Chemistry of elements	Introduction, characteristic properties(electronic configuration, complex formation, magnetic property, formation of colour, catalytic activity, periodic properties)of d-block Elements,	T1 3-24
13-15	of first transition series	properties of the element of first transition series, Relatively stability of their oxidation state, coordination number	T1 25-70
16–18		Introduction, characteristic properties(electronic configuration,	T1 79-80
19-20	To understand the Chemistry of the elements of Second	complex formation, magnetic property, formation of colour,	T1 85
21-23	&Third transition series	catalytic activity, periodic properties)of d-block Elements, properties of the element of Second & Third transition series,	T1 86-93
24-25		Relatively stability of their oxidation state, coordination number	T1 94-101
26-27		Types of magnetic behaviour, methods of determining magnetic susceptibility,	T2 58- 65
28-29	Magnetic Properties of Transition Metal complexes:	Spin only formula, L-S coupling, correlation of μ_s and μ_{eff} values, orbital contribution to magnetic moments, application of magnetic moment data for 3d metal complexes. Electronic spectra of	T2 68-74
30-31		Transition Metal complexes. Types of electronic transitions, selection rules for d-d transitions, spectroscopic ground states, spectro chemical series. Orgel energy level diagram for d ¹ and d ² states, discussion of the electronic spectrum of $[Ti (H_2O)_6]^{3+}$ complex ion.	T2 84-113
32-34		Werners coordination theory,	T1 174-175
35-37	Co-ordination Compounds	Effective atomic number concept, chelates,	T1 176- 178
38		Nomenclature of coordination compounds,	T1 180-183
39-40		Valence bond theory of transition metal complexes.	T1 194- 200

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec.No.)	Remarks
Test 1	60 Minutes	8	08.09.2022	1-15	СВ
Test 2	60 Minutes	8	19.10.2022	16- 30	СВ
Test 3	60 Minutes	8	19.11.2022	31-40	OB
Lab	60 Minutes	20	**	**	СВ
Comprehensive Exam	3 Hours	56	21.12.2022	1-40	СВ

** To be decided in the class

Make-up policy: Make–up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Dr. PRATIK K. JAGTAP Instructor-in-charge

Faculty of Science First Semester, 2022–2023 Course Handout

Course No	Course Title		Р	U
SC313	Mathematics V (Linear Algebra)	4	0	4

Instructor-in-charge: Ms. YOGITA CHANDRAKAR

Learning Outcomes:

After successful completion of the course student will be able to

- **1.** The concept of linear independence of vectors over a field, the idea of a finite dimensional vector space.
- 2. Basis of a vector space and dimension of vector space.
- 3. Basic concept of linear transformations, the Rank-Nullity theorem.
- 4. The concept inner product space and orthogonally.

Text Book T	Linear Algebra by K P Gupta, Pragati Prakashan Revised Edition 2016
Reference book(s) R1	Stephen H. Friedberg, Arnold J. Insel & Lawrence E. Spence (2003). Linear Algebra (4thedition). Prentice-Hall of India Pvt. Ltd.
Reference book(s) R2	Vivek Sahai & Vikas Bist (2013). Linear Algebra (2nd Edition) Narosa Publishing House

Lecture wise plan

			Reference
Lecture	Learning Objective	Topics to be covered	(chapter/sec./Page
Nos.			Nos of Text/Ref.
			Books)
		Definition and examples vector spaces,	
1-6	To define vector space	Subspace, Linear span, Quotient space and	T1 Ch-2
		direct sum of subspaces,	4-45
		Linearly independent and dependent sets,	
7-10	Dimension of vector spaces	Bases and dimension. Rank and nullity of a	T1 Ch-3,Ch-4
		linear transformation and rank-nullity	46-72, 73-113
		theorem.	
		Isomorphism of vector spaces, Dual and	
11-16	Properties of Linear	second dual of a vector space, linear	T1 Ch-5
	Transformations	transformation,	114-177
		Eigen vectors and Eigen values of a linear	
17-21	Eigen values and Eigen vectors	transformation, Characteristic polynomial	T1 Ch 11
		and Cayley–Hamilton theorem, Minimal	380-419
		polynomial.	

22-27	Concept of Inner Product Spaces	Inner product spaces and orthogonally, Cauchy–Schwarz inequality, Gram–Schmidt orthogonalisation, Diagonalisation of symmetric matrices.	T1 Ch-10 301-379
28-33	Ad joint of a Linear Transformation	Adjoint of a linear operator; Hermitian, unitary, normal linear transformations.	T1 Ch-10 301-379
34-37	Canonical Forms	Jordan canonical form, Triangular form,	T1 Ch-8 257-282
38-42	Invariant subspaces	Trace and transpose, Invariant subspaces	T1 Ch-9 283-300

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	17	07.09.2022	1-12	СВ
Test 2	60 Minutes	17	18.10.2022	13-28	СВ
Test 3	60 Minutes	16	18.11.2022	29-42	OB
Quizzes (2)	20 Minutes each	10	**	**	СВ
Comprehensive Exam	3 Hours	40	19.12.2022	1-42	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. YOGITA CHANDRAKAR Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
HSC313	Mathematics-V (Integral Transformations and Fourier Analysis)	4	0	4

Instructor-in-charge: Ms. YOGITA CHANDRAKAR

Learning Outcomes:

After successful completion of the course student will be able to

- 1. Find Laplace Transformations.
- 2. Find Inverse Laplace Transformations.
- 3. Convert ODEs with BVP to Integral equations.
- 4. Fourier series, Fourier Sine and Cosine Series.
- 5. Fourier Transformations, Fourier Sine and Cosine Transformations.

Tayt Book(T)	Fourier Series and Integral Transforms .Dr. S. Sreenadh, S. Ranganatham, Dr.	
ICAL DOOK(1)	M.V.S.S.N. Prasad, Dr. V. Ramesh Babu.	
Bafaranaa haak (a)	James wards Brown & Ruel V. Churchill (2011). Fourier series and Boundary value	
Kelerence Dook(s)	Problems. McGraw-Hill Education.	
Reference book(s)	J. K. Goyal And K. P. Gupta Laplace and Fourier Transforms.	

Lecture wise plan

			Reference
Lecture	Learning Objective	Topics to be covered	(chapter/sec./Page
Nos.			Nos of Text/Ref.
			Books)
		Definition of L.T., Linearity property of	
1-7	Laplace Transforms	LT, Change of scale property of LT,	T /Ch-2/ 131-199
		Shifting theorem, LT of Integral and	
		Derivatives, LT of Periodic function.	
		Definition of Inverse L.T., Linearity	T /Ch-2/ 200-276
8-15	Inverse Laplace Transforms	property of ILT, Change of scale property	
		of ILT, Shifting theorem, ILT of Integral	
		and Derivatives, Convolution theorem.	
		Definition of Fourier series, Fourier Sine	
16-20	Fourier Series	and Cosine Series	T/ Ch-1/ 3-127
		Definition of FT and IFT, Linearity	T/ Ch-3/ 279-357
21-31	Fourier Transforms and Inverse	property of FT, Change of scale property	
	Fourier Transforms	of FT ,Shifting theorem, FT of Integral	
		and Derivatives, Modulation theorem,	
		Fourier Sine and Cosine Transformations,	
		Inverse Fourier Sine and Cosine	
		Transformations.	
32-40	Applications of Laplace and	Relation between LT and FT, solutions of	T/ Ch-4/ 361-449
	Fourier Transforms	ODEs And Integral equations.	

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	17	08.09.2022	1-12	СВ
Test 2	60 Minutes	17	18.10.2022	13-28	СВ
Test 3	60 Minutes	16	18.11.2022	29-40	OB
Quizzes (2)	20 Minutes each	10		**	СВ
Comprehensive Exam	3 Hours	40	19.12.2022	1-40	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only. However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. YOGITA CHANDRAKAR Instructor-in-charge

Faculty of Science First Semester, 2022 – 2023 Course Handout

Course No	Course Title	L	Р	U
SC314	Computer Science- V (Data Structure and Algorithm)	4	2	5

Instructor-in-charge: Ms. NISHA THAKUR

Learning Outcomes:

This course introduces the core principles and techniques for Data structures. Students will gain experience in how to keep a data in an ordered fashion in the computer. Students can improve their programming skills using Data Structures Concepts. After successful completion of the course student will be able to

- 1. Explore basic data structures such as stacks and queues.
- 2. Introduce a variety of data structures such as Linked list, Trees, search trees, Graphs
- 3. Introduce sorting and searching algorithms.

Textbook(s)	Fundamentals of Data Structures by Ellis Horowitz & SartajSahni,
T1	Computer Science press.
Reference book(s)	Data Structures using C by A. K. Sharma, Pearson Education
R1	
R2	Data structures and Algorithm Analysis in C, 2nd edition, M.A.Weiss, Pearson.
R3	Data structures and Program Design in C, 2nd edition, R.Kruse, C.L.Tondo and B.Leung, Pearson
NPTEL Link	https://nptel.ac.in/courses/106/102/106102064/
SWAYAM Link	https://onlinecourses.swayam2.ac.in/cec19_cs04/preview

Lecture-wise plan:

Lecture Nos.	Learning Objective	Topics to be covered	Reference(C h./Sec./Page Nos.of Text Book)
	To learn Introduction of	Introduction of Data structure, Data	T1 CH-1
1-3	Data structure and its	types: primitive, non-primitive data	1.1, 1.3, 1.4
1-5	types	types, Linear and nonlinear data	
		structure.	
4-6	To learn application of array and	Array concept (one dimension, two	T1 CH-2
	various searching techniques	dimension), Linear and Binary Search Algorithms,	2.4
67	To learn various sorting techniques	Sorting Algorithms: Bubble Sort,	T1 CH-7
6-7		Insertion Sort, Selection Sort	7.1, 7.2
0.10	To learn various sorting techniques	Quick Sort, Merge Sort & Radix	T1 CH-7
8-10	using Divide and Conquer strategy.	sort	7.3, 7.4, 7.5
11	To learn introduction to linear data	Stack concept	T1 CH-3
	structure stack.		3.1

12-13	To learn various stack operations.	Operations PUSH, POP,	T1 CH-3
		TRAVERSE, 1s full, 1s empty.	3.1, 3.2
14-17	To learn Applications of stack	Infix, Prefix, Postfix representation,	T1 CH-3
14-17		Conversion using stack	3.3
	To learn introduction to linear data	Introduction, and Types of Queues,	T1 CH-3
18-19	structure Queue and its types.	Priority Queue, Circular queue,	3.1
		Double Ended Queue,	
20	To learn various Queue operations.	Operations (INSERT, DELETE,	T1 CH-3
20		TRAVERSE)	3.1, 3.2
	To learn introduction to linear data	Linked List, Singly and Doubly Linear	T1 CH-4
21-22	structure Linked list and its types.	link lists, Singly and doubly circular	4.1
		linked list	
22.24	To learn various linked List	Operations on linked lists insert,	T1 CH-4
25-24	operations	delete, Applications of linked lists.	4.8,4.9
To learn introduction to Nonlinear		Definition of trees and their types,	T1 CH-5
25-26	data structure Tree and its types.	Binary trees, Properties of Binary	5.1, 5.2
1		trees,.	
	To learn various operations and	Insertion, deletion, Searching and	T1 CH-5
27-30	traversal technique.	traversal algorithm, Preorder, post	5.3, 5.4, 5.5
		order, in-order traversal), BFS, DFS	
21.22	To learn various applications of tree	Binary Search Trees,	T1 CH-5
51-52		Implementations, AVL Trees, B tree,	5.6, 5.7
22	To learn introduction to Nonlinear	Definition of Graph and their types	T1 CH-6
33	data structure Graph and its types.		6.1
	To learn various applications of	Adjacency and incident (matrix	T1 CH-6
34-35	Graph	& linked list) representation of	6.2
	-	graphs, Weighted Graphs,	
	To learn various operations and	Shortest path Algorithm,	T1 CH-6
36-38	traversal technique.	Spanning tree, Minimum	6.3, 6.4
	-	Spanning tree,	•
30.40	To learn various operations and	Kruskal and prims algorithms.	T1 CH-6
39-40	traversal technique.		6.3, 6.4

Evaluation Scheme: Computer Science V (Lab)

S. No.	Name of Experiment
1	Write a program to perform the Matrix addition, Multiplication Operation. [Menu Driven]
2	Write a program to search the element using sequential search.
3	Write a program to search the element using binary search.
4	Write a program to implement bubble sort.
5	Write a program to implement selection sort.
6	Write a program to implement insertion sort.
7	Write a program to implement the concept of Stack with Push, Pop, Display and Exit operations.
8	Write a program to implement the concept of Queue with Insert, Delete, Display and Exit operations.

9	Write a program to create a single linked list and display the node elements in reverse order.
10	Write a program to create the tree and display the elements.

Student evaluation is based on the series of Tests and Quizzes conducted during the course of semester followed by a comprehensive examination.

Evaluation Component	Duration	Weightage	Date	Syllabus (Lec. No.)	Remarks
Test 1	60 Minutes	8	07.09.2022	1-12	СВ
Test 2	60 Minutes	8	17.10.2022	13-26	OB
Test 3	60 Minutes	8	17.11.2022	27-40	СВ
Lab	-	20	**	**	СВ
Comprehensive Exam	3 Hours	56	14.12.2022	1- 40	СВ

** To be announced in the class

Make-up Policy: Make up will be given only under genuine circumstances for Tests Only However prior and proper intimation to the concerned instructor is must.

General: It shall be the responsibility of individual students to attend all sessions, to take prescribed Assessment Tests, Tests and Comprehensive Examinations, etc.

Date: 02/08/2022

Ms. NISHA THAKUR Instructor-in-charge